Learning From Gaussian Data Single and Multi-Index Models

Alex Damian

based on joint work with Loucas Pillaud-Vivien, Joan Bruna, and Jason Lee

Gaussian Single-Index Models

(X,Y) follow a Gaussian single-index model with hidden direction $w^* \in S^{d-1}$ if:

$$X \sim N(0, I_d)$$
 and $\mathbb{P}[Y|X] = \mathbb{P}[Y|Z]$ where $Z := X \cdot w^*$

Examples: $Y = X \cdot w^* + \text{noise}$ (linear regression)

- $ightharpoonup Y = |X \cdot w^*| + \text{noise} \quad (\text{phase retrieval})$
- $ightharpoonup Y = \sigma(X \cdot w^*) + \text{noise}$ (learning a single neuron)
- $ightharpoonup Y = \xi \cdot (X \cdot w^*)$ where $\xi \sim N(0,1)$ (multiplicative noise)

Main Question: How many samples (x_i, y_i) do you need to efficiently recover w^* ?

Information Theory: n = O(d) samples suffice to recover w^* (maximum-likelihood)

ightharpoonup Naively searching for the maximum-likelihood estimator \hat{w}_{MLE} requires exponential time

Background: Hermite Polynomials

Orthogonal polynomials with respect to the Gaussian measure N(0,1):

$$h_0(z) = 1$$
, $h_1(z) = z$, $h_2(z) = \frac{z^2 - 1}{\sqrt{2}}$, $h_3(z) = \frac{z^3 - 3z}{\sqrt{6}}$, ...

Orthonormality: if $Z \sim N(0,1)$, $\mathbb{E}[h_j(Z)h_k(Z)] = \mathbf{1}_{j \neq k}$

Hermite Expansion: if $\mathbb{E}[f(Z)^2] < \infty$,

$$f(Z) = \sum_{k>0} c_k h_k(Z) \quad \text{where} \quad c_k = \mathbb{E}_{Z \sim N(0,1)}[f(Z)h_k(Z)]$$

Background: Hermite Polynomials

$$x = 0 h_0(x) + 1 h_1(x) + 0 h_2(x) + 0 h_3(x) + 0 h_4(x) + \dots$$

$$|x| = 0.80 h_0(x) + 0 h_1(x) + 0.56 h_2(x) + 0 h_3(x) - 0.16 h_4(x) + \dots$$

$$|e^* = 2|$$

$$x^3 - 3x = 0 h_0(x) + 0 h_1(x) + 0 h_2(x) + 2.45 h_3(x) + 0 h_4(x) + \dots$$

$$|e^* = 3|$$

$$x^2 e^{-x^2} = 0.19 h_0(x) + 0 h_1(x) + 0 h_2(x) + 0 h_3(x) - 0.05 h_4(x) + \dots$$

$$|e^* = 4|$$

Definition [BAGJ21]: The *information exponent* \mathcal{C}^{\star} is the first index $l \geq 1$ with non-zero Hermite coefficient c_l .

The Information Exponent

Definition [BAGJ21]: The *information exponent* \mathcal{C}^{\star} is the first index $l \geq 1$ with non-zero Hermite coefficient c_l .

- ▶ barrier for moment methods because it implies $\mathbb{E}[YX^{\otimes k}] = 0$ for $k < \ell^*$
- "one-step" analyses require $n \gtrsim d^{\ell^{\star}}$ samples [DLSS22, BES+22, DKL+23, ...]
- ► Online SGD requires $n \gtrsim d^{1 \vee \ell^{\star}-1}$ samples [BAGJ21, BBSS22, ...]
- ▶ Online SGD with smoothing requires $n \gtrsim d^{1\sqrt{\frac{\ell^*}{2}}}$ samples [BCR19, DNGL23]

Online SGD:
$$n \gtrsim d^{1 \vee \ell^{\star} - 1}$$
[BAGJ21]

Smoothed SGD: $n \gtrsim d^{1\sqrt{\frac{\ell^{\star}}{2}}}$ [DNGL23]

Is this optimal?

No! The information exponent is not invariant to label transformations.

$$g(z) = h_{10}(z)$$

$$\ell^{\star}(g) = 10$$

$$\ell^{\star}(g^{2}) = 2$$

$$n \gtrsim d^{5}$$

$$n \gtrsim d$$

Can learn with $n \gtrsim d$ samples:

- 1. square all the labels $y \leftarrow y^2$
- 2. run smoothed SGD/online SGD

[LL17, MM18, BKM+19, MLKZ20, ...]

$$g(z) = h_{10}(z)$$

$$\ell^{\star}(g) = 10$$

$$\ell^{\star}(g^{2}) = 2$$

$$n \gtrsim d^{5}$$

$$n \gtrsim d$$

Can learn with $n \gtrsim d$ samples:

- 1. square all the labels $y \leftarrow y^2$
- 2. run smoothed SGD/online SGD

[LL17, MM18, BKM+19, MLKZ20, ...]

Theorem [MM18]: $\exists T : \mathbb{R} \to \mathbb{R}$ such that $\mathcal{C}^*(Z, T(Y)) = 2$ if an only if:

$$\mathbb{E}[T_2(Y)^2] \neq 0$$
 where $T_2(Y) := \mathbb{E}[Z^2 - 1 | Y]$.

If T_2 is nonzero, w^* can be recovered with n=O(d) using a spectral estimator.

The same condition on T_2 is a barrier for AMP when $n = \Theta(d)$ [BKM+19, MLKZ20]

Theorem [MM18]: $\exists T : \mathbb{R} \to \mathbb{R}$ such that $\mathscr{E}^*(Z, T(Y)) = 2$ if an only if:

$$\mathbb{E}[T_2(Y)^2] \neq 0$$
 where $T_2(Y) := \mathbb{E}[Z^2 - 1 | Y]$.

If T_2 is nonzero, w^* can be recovered with n=O(d) using a spectral estimator.

The same condition on T_2 is a barrier for AMP when $n = \Theta(d)$ [BKM+19, MLKZ20]

$$\mathbb{E}[Z^2 | Y] = 1 \forall Y$$
the bad case

The Generative Exponent k^* [DPVLB24]

Variational Definition: k^* is the smallest ℓ^* achievable by a label transformation T:

$$k^* := \inf_{T} \mathscr{C}^*(Z, T(Y))$$

Level Set Definition: k^* is the smallest positive integer k such that:

$$\mathbb{E}[T_k(Y)^2] \neq 0 \quad \text{where} \quad T_k(Y) := \mathbb{E}[h_k(Z) \mid Y]$$

Examples:

► All univariate polynomials have $k^* \in \{1,2\}$

$$Y = Z^2 e^{-Z^2} \operatorname{has} k^* = 4$$

$$\implies n \gtrsim d$$

$$\implies n \gtrsim d^2$$

▶ For all
$$k \ge 1$$
, $\exists \sigma \in C^{\infty}$ such that $k^{\star}(\sigma) = k$

$$\implies n \gtrsim d^{k/2}$$

information exponent label transformation
$$k^{\star} := \inf_{T} \mathscr{C}^{\star}(Z, T(Y)) \qquad \qquad k^{\star} \leq \mathscr{C}^{\star}$$
 generative exponent

Theorem [DPVLB24]

 $n\gtrsim d^{\frac{k^*}{2}}+d/\epsilon$ samples are necessary* and sufficient to recover w^* to error ϵ

Upper Bound:

- 1. transform the labels $y \leftarrow T(y)$
- 2. run smoothed SGD [DNGL23]

Lower Bound:

polynomial time algorithms* cannot learn with fewer samples

*statistical query + low degree learners

Examples of Hard Link Functions

Examples of optimal transformations T

$$Y = h_5(Z)$$
 + noise, $\ell^* = 5$, $k^* = 1$

Pre-Transformation

Optimal Transformation T_1

Post-Transformation

Examples of optimal transformations T

$$Y = \xi \cdot Z$$
 where $\xi \sim N(0,1)$, $\ell^* = \infty$, $k^* = 2$

Pre-Transformation

Optimal Transformation T_2

Post-Transformation

Conclusion for Single-Index Models

► Generative Exponent k^* :

smallest information exponent \mathscr{C}^{\star} achievable by a label transformation T

► Upper Bound:

For any Gaussian single-index model, w^* can be efficiently recovered to error ϵ with $n \gtrsim d^{\frac{k^*}{2}} + d/\epsilon^2$ samples by transforming the labels

► Lower Bound:

This sample complexity is tight under the statistical query (SQ) and low-degree polynomial (LDP) classes of algorithms

Gaussian Multi-Index Models

(X,Y) follow a Gaussian single-index model with hidden subspace $U^\star \subseteq \mathbb{R}^d$ if:

$$X \sim N\left(0, I_d\right)$$
 and $\mathbb{P}[Y|X] = \mathbb{P}[Y|Z]$ where $Z := \operatorname{proj}_{U^*}(X) \in \mathbb{R}^r$

where $r := \dim U^*$ is the "index" or the "hidden dimension"

Examples:
$$\triangleright Y = \text{sign}(Z_1 \cdots Z_r)$$
 (parity)

- $Y = a^T \sigma(W_L \sigma(W_{l-1} \cdots \sigma(W_1 Z))) \quad \text{(deep neural network)}$
- $Y = \prod_{j} \mathbf{1}(v_j \cdot Z \ge \alpha_j)$ (intersection of halfspaces)

Information Theory: n = O(dr) samples suffice to recover U^* (maximum-likelihood)

lacktriangle Naively searching for the maximum-likelihood estimator $\hat{U}_{ ext{MLE}}$ requires exponential time

Main Question: How many samples (x_i, y_i) do you need to efficiently recover U^* ?

[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity:
$$Y = \text{sign}(Z_1 \cdots Z_r)$$

- ► Need to learn *r* directions at once (*r*-th order saddle)
- ▶ Gradient descent is believed to require $n \gtrsim d^{r-1}$ samples

Staircase Functions:

$$Y = \operatorname{sign}(Z_1) + \operatorname{sign}(Z_1 Z_2) + \dots + \operatorname{sign}(Z_1 \cdots Z_r)$$

$$k^* = 1, \text{ so } n = O(d)$$

Next, multiply all the labels by $\mathrm{sign}(Z_1)$ and subtract 1

[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity: $Y = \text{sign}(Z_1 \cdots Z_r)$

- ► Need to learn *r* directions at once (*r*-th order saddle)
- ▶ Gradient descent is believed to require $n \gtrsim d^{r-1}$ samples

Staircase Functions:

$$Y = \operatorname{sign}(Z_2) + \dots + \operatorname{sign}(Z_2 \dots Z_r)$$

$$k^* = 1, \text{ so } n = O(d)$$

Next, multiply all the labels by $\mathrm{sign}(Z_2)$ and subtract 1, ...

[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity: $Y = \text{sign}(Z_1 \cdots Z_r)$

- ► Need to learn *r* directions at once (*r*-th order saddle)
- ► Gradient descent is believed to require $n \gtrsim d^{r-1}$ samples

Staircase Functions:

$$Y = \operatorname{sign}(Z_r)$$

$$k^* = 1, \operatorname{so} n = O(d)$$

You've learned $Z_1, ..., Z_r$ in O(d) samples!

$$Y = \operatorname{sign}(Z_1 \cdots Z_r)$$

$$\operatorname{sign}(Z_1 \cdots Z_r)$$

$$\operatorname{leap} r$$

$$Y = \operatorname{sign}(Z_1) + \cdots + \operatorname{sign}(Z_1 \cdots Z_r)$$

$$n = d$$

$$\operatorname{sign}(Z_1 \cdots Z_r)$$

$$\operatorname{leap} 1$$

$$\operatorname{leap} 1$$

$$\operatorname{leap} 1$$

$$Y = \operatorname{sign}(Z_1) + \operatorname{sign}(Z_1 Z_2 Z_3 Z_4)$$

$$\operatorname{sign}(Z_1 Z_2 Z_3 Z_4)$$

$$\operatorname{sign}(Z_1)$$

$$\operatorname{leap} 3$$

$$Y = \operatorname{sign}(Z_1) + \operatorname{sign}(Z_2 Z_3 Z_4)$$

$$n = d^{3/2}$$

Generative Exponent

[Abbe, Boix-Adsera, Misiakiewicz 22&23]

[DPVLB24]

$$Y = h_5(Z_1) + \operatorname{sign}(Z_1 Z_2 Z_3 Z_4)$$

$$h_5(Z_1)$$

$$\operatorname{sign}(Z_1 Z_2 Z_3)$$

$$\operatorname{leap 5}$$

$$\operatorname{leap 3}$$

Generative Exponent [DPVLB24]

[Abbe, Boix-Adsera, Misiakiewicz 22&23]

$$T(Y) = T(h_5(Z_1) + sign(Z_1Z_2Z_3Z_4))$$

n = d

Generative Exponent

[Abbe, Boix-Adsera, Misiakiewicz 22&23]

[DPVLB24]

$$T(Y) = T(h_5(Z_1) + sign(Z_1Z_2Z_3Z_4))$$

n = d

"The Grand Staircase" [TDDZLK25]

Climbing the Staircase: The First Leap

 $k \in \{1,2\}$ analyzed in [TDDZLK25, KZM25]

Information at leap k:

$$\bigoplus_{T} \mathrm{span} \Big(\mathbb{E} \big[T(Y) \mathbf{H}_k(X) \big] \text{ reshaped as a } d \times d^{k-1} \text{ matrix} \Big)$$
 label transformation

Example: $Y = \text{sign}(Z_1 Z_2) + \text{sign}(Z_1 Z_2 Z_3 Z_4)$

- ► Information at leap 1: Ø
- ► Information at leap 2: span[Z_1, Z_2]

- ► Information at leap 3: span[Z_1, Z_2]
- ► Information at leap 4: span[Z_1, Z_2, Z_3, Z_4]

Climbing the Staircase

$$Y = sign(Z_1Z_2) + sign(Z_1Z_2Z_3Z_4)$$

Climbing the Staircase

Given: partially recovered subspace $S \subseteq \mathbb{R}^d$ (e.g. span $[Z_1, Z_2]$)

Trick: just append $X_S := \operatorname{proj}_S(X)$ to your labels! $Y \leftarrow [Y, X_S] \in \mathbb{R}^{|S|+1}$

$$Y \leftarrow [Y, X_S] \in \mathbb{R}^{|S|+2}$$

Climbing the Staircase:

$$S \leftarrow \emptyset$$
.

While
$$S \neq U^*$$
:

Transform both Y and X_{ς}

$$S \leftarrow S \oplus \bigoplus_{T} \operatorname{span} \left(\mathbb{E} \left[T(Y, X_S) \mathbf{H}_k(X) \right] \text{ reshaped as a } d \times d^{k-1} \text{ matrix} \right)$$

The Generative Leap Decomposition

If we repeat $S \leftarrow S \oplus \{$ information of order $k_i \}$, we can decompose U^* as:

$$\emptyset = S_0 \subset S_1 \subset \cdots \subset S_L = U^*$$

such that learning S_{i+1} given knowledge of S_i is a leap of size k_i .

We define the generative leap to be $k^* := \max_i k_i$ (the biggest leap) [DIKR25, DLB25]

Theorem [DLB25]: $n \gtrsim d^{1\sqrt{\frac{k^*}{2}}}$ is necessary* and sufficient to recover U^*

Upper Bound:

- 1. Use a spectral method to take one step (learn S_{i+1} from S_i)
- 2. Iterate to climb the staircase

Lower Bound:

polynomial time algorithms* cannot learn with fewer samples

*statistical query + low degree learners

Our Estimator: A Spectral U-Statistic

Goal: estimate

$$\bigoplus_{T} \operatorname{span} \left(\mathbb{E} \left[T(Y) \mathbf{H}_{k}(X) \right] \text{ reshaped as a } d \times d^{k-1} \text{ matrix} \right)$$

Plug in estimator:

SVD
$$\left[\frac{1}{n}\sum_{i=1}^{n} T(y_i)\mathbf{H}_k(X)\right]$$
 reshaped as a $d \times d^{k-1}$ matrix

- Suffers from poor concentration
- Fixable by unfolding & keeping only the non-diagonal terms (U-statistic)

$$SVD\left[\frac{1}{n(n-1)}\sum_{i\neq j}T(y_i)T(y_j)x_ix_j^T(x_i\cdot x_j)^{k-1}\right]$$

Our Estimator: A Spectral U-Statistic

Goal: estimate

$$\bigoplus_{T} \operatorname{span} \left(\mathbb{E} \left[T(Y) \mathbf{H}_{k}(X) \right] \text{ reshaped as a } d \times d^{k-1} \text{ matrix} \right)$$

Plug in estimator:

SVD
$$\left[\frac{1}{n}\sum_{i=1}^{n} T(y_i)\mathbf{H}_k(X)\right]$$
 reshaped as a $d \times d^{k-1}$ matrix

- Suffers from poor concentration
- ► Fixable by unfolding & keeping only the non-diagonal terms (U-statistic)
- ▶ Replace $T(y_i)T(y_j)$ by a kernel $K(y_i, y_j) \Rightarrow$ "averages infinite label transformations"

$$SVD\left[\frac{1}{n(n-1)}\sum_{i\neq j}K(y_i,y_j)x_ix_j^T(x_i\cdot x_j)^{k-1}\right]$$

Our Estimator: Climbing the Staircase

$$S \leftarrow \emptyset$$

for
$$i = 1, ..., m$$
:

Draw $\lfloor n/m \rfloor$ fresh samples

Compute the matrix U-statistic \widehat{M} on (X, \widetilde{Y}) where $\widetilde{Y} = [Y | \operatorname{proj}_{S}(X)]$

$$[\Lambda, V] \leftarrow \text{SVD}(\widehat{M})$$

$$S \leftarrow S \oplus \text{span}[v_1, ..., v_s]$$

return S

Computing The Generative Leap k^*

- ► Single Index: the generative leap and generative exponent coincide
- ► Polynomials: $k^* \in \{1,2\}$ [CM20]
- ► Gaussian parity: $Y = \text{sign}(Z_1 \cdots Z_r)$ has $k^* = r$
 - \Rightarrow our upper bound gives the first algorithm that succeeds with $n=O(d^{\frac{r}{2}})$ samples
- ► Intersections of halfspaces: $k^* \in \{1,2\}$ [Vem10]
- ▶ Piecewise linear: $k^* \in \{1,2\}$
 - \Rightarrow implies learnability of any constant depth/width ReLU network with n = O(d) samples
 - ⇒ improves a prior result of [CKM22] by allowing biases in the network

Conclusion for Multi-Index Models

- ▶ We introduced the **generative leap** k^* as a natural generalization of the generative exponent to multi-index models
- We proved an upper bound showing that for any Gaussian multi-index model, w^\star can be recovered with $n \gtrsim d^{1\vee\frac{k^\star}{2}}$ samples
- We proved this sample complexity is tight under the statistical query (SQ) and low-degree polynomial (LDP) classes
- ▶ We showed that many multi-index models, including ReLU networks, have generative leap k^* ∈ {1,2} and can be learned with n = O(d) samples