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Gaussian Single-Index Models
 follow a Gaussian single-index model with hidden direction  if:(X, Y) w⋆ ∈ Sd−1

X ∼ N (0, Id) and ℙ[Y |X] = ℙ[Y |Z] where Z := X ⋅ w⋆

Examples:

Main Question: How many samples  do you need to efficiently recover ?(xi, yi) w⋆

Information Theory:  samples suffice to recover  (maximum-likelihood) 

‣Naively searching for the maximum-likelihood estimator  requires exponential time

n = O(d) w⋆

ŵMLE

‣      (linear regression) 

‣      (phase retrieval) 

‣      (learning a single neuron) 

‣  where      (multiplicative noise)

Y = X ⋅ w⋆+noise

Y = |X ⋅ w⋆ | + noise

Y = σ(X ⋅ w⋆) + noise

Y = ξ ⋅ (X ⋅ w⋆) ξ ∼ N(0,1)



Background: Hermite Polynomials

Orthogonal polynomials with respect to the Gaussian measure  : N(0,1)

h0(z) = 1, h1(z) = z, h2(z) = z2 − 1
2

, h3(z) = z3 − 3z

6
, …

Orthonormality: if   , Z ∼ N(0,1) 𝔼[hj(Z)hk(Z)] = 1j≠k

Hermite Expansion: if , 𝔼[ f(Z)2] < ∞

f(Z) = ∑
k≥0

ckhk(Z) where ck = 𝔼Z∼N(0,1)[ f(Z)hk(Z)]



x = 0 h0(x) + 1 h1(x) + 0 h2(x) + 0 h3(x) + 0 h4(x) + …

|x | = 0.80 h0(x) + 0 h1(x) + 0.56 h2(x) + 0 h3(x) − 0.16 h4(x) + …

x3 − 3x = 0 h0(x) + 0 h1(x) + 0 h2(x) + 2.45 h3(x) + 0 h4(x) + …

x2e−x2 = 0.19 h0(x) + 0 h1(x) + 0 h2(x) + 0 h3(x) − 0.05 h4(x) + …

Background: Hermite Polynomials

ℓ⋆ = 1

ℓ⋆ = 2

ℓ⋆ = 3

ℓ⋆ = 4

Definition [BAGJ21]: The information exponent  is the first index      

                                       with non-zero Hermite coefficient .

ℓ⋆ l ≥ 1
cl



The Information Exponent

‣barrier for moment methods because it implies  for  

‣ “one-step” analyses require  samples [DLSS22, BES+22, DKL+23, …] 

‣Online SGD requires  samples [BAGJ21, BBSS22, …] 

‣Online SGD with smoothing requires  samples [BCR19, DNGL23]

𝔼[YX⊗k] = 0 k < ℓ⋆

n ≳ dℓ⋆

n ≳ d1∨ℓ⋆−1

n ≳ d1∨ ℓ⋆
2

Definition [BAGJ21]: The information exponent  is the first index      

                                       with non-zero Hermite coefficient .

ℓ⋆ l ≥ 1
cl



Optimal Rates for Single-Index Models

Online SGD:  

[BAGJ21]

n ≳ d1∨ℓ⋆−1 Smoothed SGD:  

[DNGL23]

n ≳ d1∨ ℓ⋆
2

No! The information exponent is not invariant to label transformations.

ℓ⋆(g) = 10
n ≳ d5

g(z) = h10(z)

ℓ⋆(g2) = 2
n ≳ d

Is this optimal?

Can learn with  samples: 

1. square all the labels  

2. run smoothed SGD/online SGD

n ≳ d

y ← y2

[LL17, MM18, BKM+19, MLKZ20, …]



Optimal Rates for Single-Index Models

Theorem [MM18]:  such that  if an only if: 

. 

If  is nonzero,  can be recovered with  using a spectral estimator.

∃T : ℝ → ℝ ℓ⋆(Z, T(Y)) = 2
𝔼[T2(Y)2] ≠ 0 where T2(Y) := 𝔼[Z2 − 1 |Y]

T2 w⋆ n = O(d)

The same condition on  is a barrier for AMP when  [BKM+19, MLKZ20]T2 n = Θ(d)

ℓ⋆(g) = 10
n ≳ d5

g(z) = h10(z)

ℓ⋆(g2) = 2
n ≳ d

Can learn with  samples: 

1. square all the labels  

2. run smoothed SGD/online SGD

n ≳ d

y ← y2

[LL17, MM18, BKM+19, MLKZ20, …]



Y = Z2e−Z2

Optimal Rates for Single-Index Models

Y

ℙ[Z |Y]𝔼[Z2 |Y] = 1 ∀Y
the bad case

Theorem [MM18]:  such that  if an only if: 

. 

If  is nonzero,  can be recovered with  using a spectral estimator.

∃T : ℝ → ℝ ℓ⋆(Z, T(Y)) = 2
𝔼[T2(Y)2] ≠ 0 where T2(Y) := 𝔼[Z2 − 1 |Y]

T2 w⋆ n = O(d)

The same condition on  is a barrier for AMP when  [BKM+19, MLKZ20]T2 n = Θ(d)



The Generative Exponent  [DPVLB24]k⋆

Level Set Definition:  is the smallest positive integer  such that: k⋆ k
𝔼[Tk(Y)2] ≠ 0 where Tk(Y) := 𝔼[hk(Z) |Y]

Examples: 

‣ All univariate polynomials have  

‣  has  

‣ For all ,  such that 

k⋆ ∈ {1,2}
Y = Z2e−Z2 k⋆ = 4

k ≥ 1 ∃σ ∈ C∞ k⋆(σ) = k

 

 

⟹ n ≳ d
⟹ n ≳ d2

⟹ n ≳ dk/2

Variational Definition:  is the smallest  achievable by a label transformation : k⋆ ℓ⋆ T

k⋆ := inf
T

ℓ⋆(Z, T(Y))



Optimal Rates for Single-Index Models

k⋆ := inf
T

ℓ⋆(Z, T(Y))
generative exponent 

label transformationinformation exponent

1. transform the labels  

2. run smoothed SGD [DNGL23]

y ← T(y)
Upper Bound:

 samples are necessary* and sufficient to recover  to error n ≳ d k⋆
2 + d/ϵ w⋆ ϵ

Theorem [DPVLB24]

polynomial time algorithms* cannot 
learn with fewer samples

Lower Bound:

*statistical query + low degree learners

k⋆ ≤ ℓ⋆



Examples of Hard Link Functions

°4 °2 0 2 4

k? = 3

°4 °2 0 2 4

k? = 6

°4 °2 0 2 4

k? = 4

°4 °2 0 2 4

k? = 7

°4 °2 0 2 4

k? = 5

°4 °2 0 2 4

k? = 8

Y

ℙ[Z |Y]



E[Y |Z]
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Joint Distribution of (Z,z1(Y ))
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Optimal Transformation z1

E[Y |Z]
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Y

°3 °2 °1 0 1 2 3

Z

Y = h5(Z) + additive Gaussian noise

Examples of optimal transformations  T

Z

Y

 + noise,          ,  Y = h5(Z) ℓ⋆ = 5 k⋆ = 1

Y

T1(Y)

Optimal Transformation T1

Z

T1(Y)

Post-TransformationPre-Transformation



E[Y |Z]
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E[Y |Z]
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°3 °2 °1 0 1 2 3

Z

Y = Zx where x ª N(0,1)

Examples of optimal transformations  T

Y

T2(Y)

ZZ

Y T2(Y)

 where ,          ,  Y = ξ ⋅ Z ξ ∼ N(0,1) ℓ⋆ = ∞ k⋆ = 2

Optimal Transformation T2 Post-TransformationPre-Transformation



Conclusion for Single-Index Models

‣ Generative Exponent : 
smallest information exponent  achievable by a label transformation  

‣Upper Bound: 
For any Gaussian single-index model,  can be efficiently recovered to 

error  with  samples by transforming the labels 

‣ Lower Bound: 
This sample complexity is tight under the statistical query (SQ) and low-
degree polynomial (LDP) classes of algorithms

k⋆

ℓ⋆ T

w⋆

ϵ n ≳ d k⋆
2 + d/ϵ2



Gaussian Multi-Index Models
 follow a Gaussian single-index model with hidden subspace  if:(X, Y) U⋆ ⊆ ℝd

X ∼ N (0, Id) and ℙ[Y |X] = ℙ[Y |Z] where Z := projU⋆(X) ∈ ℝr

‣      (parity) 

‣      (deep neural network) 

‣   (intersection of halfspaces)

Y = sign(Z1⋯Zr)
Y = aTσ(WLσ(Wl−1⋯σ(W1Z)))
Y = ∏j 1(vj ⋅ Z ≥ αj)

Examples:

Main Question: How many samples  do you need to efficiently recover ?(xi, yi) U⋆

where  is the “index” or the “hidden dimension”r := dim U⋆

Information Theory:  samples suffice to recover  (maximum-likelihood) 

‣Naively searching for the maximum-likelihood estimator  requires exponential time

n = O(dr) U⋆

ÛMLE



The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity:  

‣ Need to learn  directions at once       ( -th order saddle) 

‣ Gradient descent is believed to require  samples

Y = sign(Z1⋯Zr)
r r

n ≳ dr−1

Staircase Functions:

Y = sign(Z1) + sign(Z1Z2) + … + sign(Z1⋯Zr)

, so k⋆ = 1 n = O(d)

Next, multiply all the labels by  and subtract sign(Z1) 1



The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity:  

‣ Need to learn  directions at once       ( -th order saddle) 

‣ Gradient descent is believed to require  samples

Y = sign(Z1⋯Zr)
r r

n ≳ dr−1

Staircase Functions:

Y = sign(Z2) + … + sign(Z2⋯Zr)

, so k⋆ = 1 n = O(d)

Next, multiply all the labels by  and subtract , …sign(Z2) 1



The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity:  

‣ Need to learn  directions at once       ( -th order saddle) 

‣ Gradient descent is believed to require  samples

Y = sign(Z1⋯Zr)
r r

n ≳ dr−1

Staircase Functions:

Y = sign(Zr)

, so k⋆ = 1 n = O(d)

You’ve learned  in  samples!Z1, …, Zr O(d)



sign(Z1⋯Zr)

The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

leap r

  Y = sign(Z1⋯Zr) n = dr/2



leap r

The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

sign(Z1⋯Zr)

…

sign(Z1Z2)

sign(Z1)

leap 1

leap 1

leap 1

leap 1

n = d     Y = sign(Z1)+ ⋯ + sign(Z1⋯Zr)



The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

sign(Z1Z2Z3Z4)

sign(Z1)

leap 3

leap 1

n = d3/2    Y = sign(Z1) + sign(Z1Z2Z3Z4)



sign(Z2Z3Z4)

The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

leap 3sign(Z1)

leap 1

n = d3/2    Y = sign(Z1) + sign(Z2Z3Z4)



sign(Z1Z2Z3)

h5(Z1)

leap 5

The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Generative Exponent 
[DPVLB24]

+

leap 3

n = d3/2    Y = h5(Z1) + sign(Z1Z2Z3Z4)



sign(Z1Z2Z3)

T(h5(Z1) + …)
leap 2

leap 1

The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Generative Exponent 
[DPVLB24]

+

n = d     T(Y ) = T(h5(Z1) + sign(Z1Z2Z3Z4))



The Staircase Property 
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Generative Exponent 
[DPVLB24]

+

n = d     T(Y ) = T(h5(Z1) + sign(Z1Z2Z3Z4))

“The Grand Staircase” [TDDZLK25]



Climbing the Staircase: The First Leap

label transformation

‣ Information at leap : 1 ×

‣ Information at leap : 2 span[Z1, Z2]
‣ Information at leap : 3 span[Z1, Z2]

‣ Information at leap : 4 span[Z1, Z2, Z3, Z4]

Example: Y = sign(Z1Z2) + sign(Z1Z2Z3Z4)

Information at leap : 

  reshaped as a  matrix

k

⨁
T

span(𝔼[T(Y )Hk(X)] d ∅ dk−1 )

 analyzed in [TDDZLK25, KZM25]k ∈ {1,2}



sign(Z1Z2Z3Z4)

sign(Z1Z2)

leap 2

leap 2

sign(Z1Z2) + sign(Z1Z2Z3Z4)Y =

Climbing the Staircase

Need to condition on 
to learn {Z1, Z2} {Z3, Z4}



Climbing the Staircase

Given: partially recovered subspace        (e.g. )S ⊆ ℝd span[Z1, Z2]

Trick: just append  to your labels!         XS := projS(X) Y ← [Y, XS] ∈ ℝ|S|+1

 ,  reshaped as a  matrixS ← S ⊕ ⨁
T

span(𝔼[T(Y XS )Hk(X)] d ∅ dk−1 )

Climbing the Staircase:

While :S ≠ U⋆
.S ← ×

Transform both  and Y XS



The Generative Leap Decomposition
If we repeat , we can decompose   as:S ← S ⊕ {information of order ki} U⋆

× = S0 ⊂ S1 ⊂ ⋯ ⊂ SL = U⋆

such that learning  given knowledge of  is a leap of size .Si+1 Si ki

Theorem [DLB25]:  is necessary* and sufficient to recover n ≳ d1∨ k⋆
2 U⋆

1. Use a spectral method to take 
one step (learn  from ) 

2. Iterate to climb the staircase

Si+1 Si

Upper Bound:

polynomial time algorithms* cannot 
learn with fewer samples

Lower Bound:

*statistical query + low degree learners

We define the generative leap to be  (the biggest leap) [DIKR25, DLB25]k⋆ := maxi ki



Our Estimator: A Spectral U-Statistic

‣ Suffers from poor concentration ! 

‣ Fixable by unfolding & keeping only the non-diagonal terms (U-statistic)

SVD[ 1
n(n − 1) ∑i≠j T(yi)T(yj) xixT

j (xi ⋅ xj)k−1]

Goal: estimate        reshaped as a  matrix⨁
T

span(𝔼[T(Y )Hk(X)] d ∅ dk−1 )
Plug in estimator: 

 reshaped as a  matrixSVD[ 1
n ∑n

i=1 T(yi)Hk(X) d ∅ dk−1 ]



Our Estimator: A Spectral U-Statistic

‣ Suffers from poor concentration ! 

‣ Fixable by unfolding & keeping only the non-diagonal terms (U-statistic)

SVD[ 1
n(n − 1) ∑i≠j K(yi, yj) xixT

j (xi ⋅ xj)k−1]
‣ Replace  by a kernel   “averages infinite label transformations” T(yi)T(yj) K(yi, yj) ⇒

Goal: estimate        reshaped as a  matrix⨁
T

span(𝔼[T(Y )Hk(X)] d ∅ dk−1 )
Plug in estimator: 

 reshaped as a  matrixSVD[ 1
n ∑n

i=1 T(yi)Hk(X) d ∅ dk−1 ]



Our Estimator: Climbing the Staircase

 

for  

Draw  fresh samples 

Compute the matrix U-statistic  on  where  

 

 

return 

S ← ×
i = 1,…, m :

⌊n/m⌋
̂M (X, Ỹ) Ỹ = [Y |projS(X)]

[Λ, V] ← SVD( ̂M )
S ← S ⊕ span[v1, …, vs]

S



Computing The Generative Leap k⋆

‣ Single Index: the generative leap and generative exponent coincide 

‣ Polynomials:  [CM20] 

‣ Gaussian parity:  has  

 our upper bound gives the first algorithm that succeeds with  samples 

‣ Intersections of halfspaces:  [Vem10] 

‣ Piecewise linear:  

 implies learnability of any constant depth/width ReLU network with  samples 

 improves a prior result of [CKM22] by allowing biases in the network

k⋆ ∈ {1,2}

Y = sign(Z1⋯Zr) k⋆ = r

⇒ n = O(d r
2)

k⋆ ∈ {1,2}

k⋆ ∈ {1,2}

⇒ n = O(d)

⇒



Conclusion for Multi-Index Models

‣ We introduced the generative leap  as a natural generalization of the 
generative exponent to multi-index models 

‣ We proved an upper bound showing that for any Gaussian multi-index 

model,  can be recovered with  samples 

‣ We proved this sample complexity is tight under the statistical query (SQ) 
and low-degree polynomial (LDP) classes 

‣ We showed that many multi-index models, including ReLU networks, have 
generative leap  and can be learned with  samples

k⋆

w⋆ n ≳ d1∨ k⋆
2

k⋆ ∈ {1,2} n = O(d)


