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Gaussian Single-Index Models

(X, Y) follow a Gaussian single-index model with hidden direction w* € S~ if:

X ~ N(O, Id) and | [Y‘X] = | [Y‘Z] where 7Z =X -w*
Examples: » Y = X - w*+noise
» Y =|X-w”*| + noise

» Y =06(X - w™) 4+ noise

» Y=¢-(X-w*)where & ~ N(O,1)

Information Theory: n = O(d) samples suffice to recover w* (maximum-likelihood)

» Naively searching for the maximum-likelihood estimator wy . requires exponential time



Background: Hermite Polynomials

Orthogonal polynomials with respect to the Gaussian measure N(0,1):

72— 1 72 — 3z

=1, h@ =2z h@ =" )= ,

Orthonormality: if Z ~

Hermite Expansion: if

V2 V6

N(O,1), E[(Z)h(Z)] = 1.,

“[f(Z)*] < oo,

fZ)= ) ch(Z) where ¢, =E, yonlfDh(2)]

k>0




Background: Hermite Polynomials
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Definition [BAGJ21]: The information exponent ™ is the first index [ > 1

with non-zero Hermite coefficient c,.




The Information Exponent

Definition [BAGJ21]: The information exponent ™ is the first index [ > 1

with non-zero Hermite coefficient ¢,.

» barrier for moment methods because it implies C[YX® ] =0fork < £
» “one-step” analyses require n 2> d’’ samples [DLSS22, BES+22, DKL*23, ...]

» Online SGD requires 1 > d'V’ ~! samples [BAGJ21, BBSS22, ..]
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» Online SGD with smoothing requires n > d'V= samples [BCR19, DNGL23]



Optimal Rates for Single-Index Models

Online SGD: n > d'V ! Smoothed SGD: 1 > d!V'T
[BAGJ21] [IDNGL23]

|s this optimal?

No! The information exponent is not invariant to label transformations.

2(z) = hyy(2) Can learn with n 2 d samples:

/ \ 1. square all the labels y « y?

(g =10 £ (g?) =2
n>d n2>d

2. run smoothed SGD/online SGD

[ILL17, MM18, BKM+19, MLKZ20, ..]



Optimal Rates for Single-Index Models

2(z) = hyy(2) Can learn with n =2 d samples:

/ \ 1. square all the labels y « y?

* _ ko 2N
4 (g) _510 ¢ (g ) =2 2. run smoothed SGD/online SGD
nzd nzd

ILL17, MM18, BKM+*19, MLKZ20, ...

H

Theorem [MM18]: 37 : R — R suchthat 7 *(Z, 7(Y)) = 2 if an only if:
C[7,(Y) 1 #0 where 7,(Y) :=E[Z*—-1]|Y].

If 7', is nonzero, w™ can be recovered with n = O(d) using a spectral estimator.

The same condition on 7 is a barrier for AMP when n = ©(d) [BKM+19, MLKZ20]



Optimal Rates for Single-Index Models

Theorem [MM18]: 37 : R — R such that £*(Z, 7(Y)) = 2 if an only if:
C[7(Y) 1 #0 where 7,(Y) :=E[Z*-1]|Y].

If 7', is nonzero, w™ can be recovered with n = O(d) using a spectral estimator.

The same condition on 7 is a barrier for AMP when n = ©(d) [BKM+19, MLKZ20]
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The Generative Exponent k* [DPVLB24]

Variational Definition: k™ is the smallest # ™ achievable by a label transformation 7*

k* :=inf #*(Z, T(Y))
T

Level Set Definition: k™ is the smallest positive integer k such that:

[T,V 1 #0 where T,(Y) :=E[h(Z)]|Y]

Examples:
» All univariate polynomials have k* € {1,2} —> n=d
» Y =727 hask* = 4 — n > d’

» Forallk > 1, 36 € C® suchthatk™(6) = k — > M2



Optimal Rates for Single-Index Models

information exponent \ Ve label transformation
k* :=inf 7*(Z, T(Y)) kK* </~
T

generative exponent

Theorem [DPVLB24]

K> .
n > dz + d/e samples are necessary* and sufficient to recover w™ to error €

Upper Bound: Lower Bound:

polynomial time algorithms* cannot
learn with fewer samples

2. run smoothed SGD [DNGL23] *statistical query + low degree learners

1. transform the labels y < 7(y)




Examples of Hard Link Functions
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Examples of optimal transformations 7/

Y = hs(Z) + noise, £ =5 k=1

Pre-Transformation Optimal Transformation / Post-Transformation
3
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Examples of optimal transformations 7/

Y =¢&-Zwhereé ~ N(O,1),

Pre-Transformation

£ =00 k¥ =2

Optimal Transformation /,
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Conclusion for Single-Index Models

» Generative Exponent k *:
smallest information exponent 7™ achievable by a label transformation 7

» Upper Bound:

For any Gaussian single-index model, w™* can be efficiently recovered to
k*

error e withn 2 d'7 + d/e? samples by transforming the labels

» Lower Bound:
This sample complexity is tight under the statistical query (SQ) and low-
degree polynomial (LDP) classes of algorithms



Gaussian Multi-Index Models

(X, Y) follow a Gaussian single-index model with hidden subspace U* C R4 if:

X~N(0,1;) and P[Y|X]=P[Y|Z] where Z:=proj,.(X)€ R’

where 7 := dim U is the “index” or the “hidden dimension”

Examples: » Y = sign(Z,---Z))
> Y =a'c(W,6(W,_,---6(W,Z2)))

Information Theory: n = O(dr) samples suffice to recover U™ (maximum-likelihood)

» Naively searching for the maximume-likelihood estimator lA]MLE requires exponential time




The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity: Y = sign(Z,---Z))
» Need to learn r directions at once

» Gradient descent is believed to require n > d"~! samples

Staircase Functions:

!

k* =1,son = O(d)

Next, multiply all the labels by sign(Z;) and subtract 1



The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity: Y = sign(Z,---Z))
» Need to learn r directions at once

» Gradient descent is believed to require n > d"~! samples

Staircase Functions:

Y =s1gn(4,) + ... +s1gn(2,---Z))

!

k* =1,son = O(d)

Next, multiply all the labels by sign(Z,) and subtract 1, ..



The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity: Y = sign(Z,---Z))
» Need to learn r directions at once

» Gradient descent is believed to require n > d"~! samples

Staircase Functions:

Y = sign(Z))

!

k* =1,son = O(d)

You've learned Z;, ..., Z.in O(d) samples!



The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Y=si1gn(Z---Z)

sign(Z;++-2.)

leap r

n — dr/Z



The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Y=s1gn(Z,)+ --- +s1gn(Z;---Z,) n=d
sign(Z;++-2.)




The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Y = SigH(Zl) + Sign(Z1Z2Z3Z4) n = d3/2
sign(Z,2,2,7,)

leap 3




The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Y = sign(4,) + s1gn(£,2:2,) n = d°*

S1gn(2y,2x7,)

leap 3




The Staircase Property + Generative Exponent
[Abbe, Boix-Adsera, Misiakiewicz 22&23] IDPVLB24]

hs(Z,)

S (VAVAYAY

leap 3




The Staircase Property + Generative Exponent
[Abbe, Boix-Adsera, Misiakiewicz 22&23] IDPVLB24]

100) = 7(hs2) + sign(2,2,2:2,) n=d

S (VAVAYAY

leap 2




The Staircase Property + Generative Exponent
|[Abbe, Boix-Adsera, Misiakiewicz 22&23] IDPVLB24]

1Y) =1\ hs(£)) + s1gn(£,2,2;:2,) n =

“The Grand Staircase” [TDDZLK25]



Climbing the Staircase: The First Leap

k € {1,2} analyzed in [TDDZLK25, KZM25]

Information at leap k:

@ Span( - [T(Y)Hk(X)] reshaped asa d X d*~! matrix)
\

T .
¥———abel transformation

Example: Y = sign(Z,2,) + sign(£,2,2-7,)
» Information at leap 1: & » Information at leap 3: span|Z,, £,

» Information at leap 2: span|Z,, £, » Information at leap 4: span|Z,, Z,, Z,, Z,]



Climbing the Staircase

Y = sign(£,%,) + sign(£,4,2,7,)

sign(Z,2,2,7,)

leap 2

Need to condition on

2L, 2y 110 learn {25, 2,4}




Climbing the Staircase

Given: partially recovered subspace S C RY

Trick: just append X, := proj¢(X) to your labels! Y < [V, X(] € [S1+1

Climbing the Staircase:

S« @.
While S [J* Transform both Y and X

/

S« S @ span( - [T(Y, X )Hk(X)] reshaped as ad X d*~! matrix)
T




The Generative Leap Decomposition

If we repeat § < § @ {information of order k;}, we can decompose U™ as:
QZSOCSIC ce CSL:U*

such that learning S, | given knowledge of $; is a leap of size k;.

We define the generative leap to be k™ ;= max; k; (the biggest leap) [DIKR25, DLB25]

X

Theorem [DLB25|: n 2> d'V7Tis necessary* and sufficient to recover U*

Upper Bound: Lower Bound:

1. Use a spectral method to take polynomial time algorithms* cannot
one step (learn S;, ; from S)) learn with fewer samples

2 Iterate to climb the staircase *statistical query + low degree learners




Our Estimator: A Spectral U-Statistic

Goal: estimate @ span( - [T(Y)Hk(X)] reshaped asad X d*~! matrix)
T

Plug in estimator:

SVD l% 2?21 I'(y,)H (X) reshaped as a d X d*! matrix]

» Suffers from poor concentration &

» Fixable by unfolding & keeping only the non-diagonal terms (U-statistic)

SVD l n(nl_ 1) Zl#] T(yl) T(y]) 'xiij(xi ' xj)k_ll



Our Estimator: A Spectral U-Statistic

Goal: estimate @ span( - [T(Y)Hk(X)] reshaped asad X d*~! matrix)
T

Plug in estimator:

SVD l% 2?21 I'(y,)H (X) reshaped as a d X d*! matrix]

» Suffers from poor concentration

» Fixable by unfolding & keeping only the non-diagonal terms (U-statistic)

» Replace T(yl-)T(yj) by a kernel K(y;, y]-) = “averages infinite label transformations”

1 —
>VD l o i KO )% (x5 )



Our Estimator: Climbing the Staircase

S« @
fori=1,....m:
Draw |n/m| fresh samples
Compute the matrix U-statistic M on (X, Y)where Y = [Y] proj o(X)]
[A, V] < SVD(M)
S < S @ spanlvy,...,v ]

return S
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Computing The Generative Leap k *

Single Index: the generative leap and generative exponent coincide
Polynomials: k* € {1,2} [CM20]
Gaussian parity: Y = sign(Z,---Z ) has k™ = r
= our upper bound gives the first algorithm that succeeds with n = O(dg) samples
Intersections of halfspaces: k* € {1,2} [Vem10]
Piecewise linear: k* € {1,2}
= implies learnability of any constant depth/width ReLU network with n = O(d) samples

= improves a prior result of [CKM22] by allowing biases in the network



Conclusion for Multi-Index Models

We introduced the generative leap k* as a natural generalization of the
generative exponent to multi-index models

We proved an upper bound showing that for any Gaussian multi-index

X

model, w* can be recovered with n > d'V= samples

We proved this sample complexity is tight under the statistical query (SQ)
and low-degree polynomial (LDP) classes

We showed that many multi-index models, including RelLU networks, have
generative leap k™ € {1,2} and can be learned with n = O(d) samples



