
Learning From Gaussian Data
Single and Multi-Index Models

Alex Damian

based on joint work with Loucas Pillaud-Vivien, Joan Bruna, and Jason Lee

Gaussian Single-Index Models
 follow a Gaussian single-index model with hidden direction if:(X, Y) w⋆ ∈ Sd−1

X ∼ N (0, Id) and ℙ[Y |X] = ℙ[Y |Z] where Z := X ⋅ w⋆

Examples:

Main Question: How many samples do you need to efficiently recover ?(xi, yi) w⋆

Information Theory: samples suffice to recover (maximum-likelihood)

‣Naively searching for the maximum-likelihood estimator requires exponential time

n = O(d) w⋆

ŵMLE

‣ (linear regression)

‣ (phase retrieval)

‣ (learning a single neuron)

‣ where (multiplicative noise)

Y = X ⋅ w⋆+noise

Y = |X ⋅ w⋆ | + noise

Y = σ(X ⋅ w⋆) + noise

Y = ξ ⋅ (X ⋅ w⋆) ξ ∼ N(0,1)

Background: Hermite Polynomials

Orthogonal polynomials with respect to the Gaussian measure : N(0,1)

h0(z) = 1, h1(z) = z, h2(z) = z2 − 1
2

, h3(z) = z3 − 3z

6
, …

Orthonormality: if , Z ∼ N(0,1) 𝔼[hj(Z)hk(Z)] = 1j≠k

Hermite Expansion: if , 𝔼[f(Z)2] < ∞

f(Z) = ∑
k≥0

ckhk(Z) where ck = 𝔼Z∼N(0,1)[f(Z)hk(Z)]

x = 0 h0(x) + 1 h1(x) + 0 h2(x) + 0 h3(x) + 0 h4(x) + …

|x | = 0.80 h0(x) + 0 h1(x) + 0.56 h2(x) + 0 h3(x) − 0.16 h4(x) + …

x3 − 3x = 0 h0(x) + 0 h1(x) + 0 h2(x) + 2.45 h3(x) + 0 h4(x) + …

x2e−x2 = 0.19 h0(x) + 0 h1(x) + 0 h2(x) + 0 h3(x) − 0.05 h4(x) + …

Background: Hermite Polynomials

ℓ⋆ = 1

ℓ⋆ = 2

ℓ⋆ = 3

ℓ⋆ = 4

Definition [BAGJ21]: The information exponent is the first index

 with non-zero Hermite coefficient .

ℓ⋆ l ≥ 1
cl

The Information Exponent

‣barrier for moment methods because it implies for

‣ “one-step” analyses require samples [DLSS22, BES+22, DKL+23, …]

‣Online SGD requires samples [BAGJ21, BBSS22, …]

‣Online SGD with smoothing requires samples [BCR19, DNGL23]

𝔼[YX⊗k] = 0 k < ℓ⋆

n ≳ dℓ⋆

n ≳ d1∨ℓ⋆−1

n ≳ d1∨ ℓ⋆
2

Definition [BAGJ21]: The information exponent is the first index

 with non-zero Hermite coefficient .

ℓ⋆ l ≥ 1
cl

Optimal Rates for Single-Index Models

Online SGD:

[BAGJ21]

n ≳ d1∨ℓ⋆−1 Smoothed SGD:

[DNGL23]

n ≳ d1∨ ℓ⋆
2

No! The information exponent is not invariant to label transformations.

ℓ⋆(g) = 10
n ≳ d5

g(z) = h10(z)

ℓ⋆(g2) = 2
n ≳ d

Is this optimal?

Can learn with samples:

1. square all the labels

2. run smoothed SGD/online SGD

n ≳ d

y ← y2

[LL17, MM18, BKM+19, MLKZ20, …]

Optimal Rates for Single-Index Models

Theorem [MM18]: such that if an only if:

.

If is nonzero, can be recovered with using a spectral estimator.

∃T : ℝ → ℝ ℓ⋆(Z, T(Y)) = 2
𝔼[T2(Y)2] ≠ 0 where T2(Y) := 𝔼[Z2 − 1 |Y]

T2 w⋆ n = O(d)

The same condition on is a barrier for AMP when [BKM+19, MLKZ20]T2 n = Θ(d)

ℓ⋆(g) = 10
n ≳ d5

g(z) = h10(z)

ℓ⋆(g2) = 2
n ≳ d

Can learn with samples:

1. square all the labels

2. run smoothed SGD/online SGD

n ≳ d

y ← y2

[LL17, MM18, BKM+19, MLKZ20, …]

Y = Z2e−Z2

Optimal Rates for Single-Index Models

Y

ℙ[Z |Y]𝔼[Z2 |Y] = 1 ∀Y
the bad case

Theorem [MM18]: such that if an only if:

.

If is nonzero, can be recovered with using a spectral estimator.

∃T : ℝ → ℝ ℓ⋆(Z, T(Y)) = 2
𝔼[T2(Y)2] ≠ 0 where T2(Y) := 𝔼[Z2 − 1 |Y]

T2 w⋆ n = O(d)

The same condition on is a barrier for AMP when [BKM+19, MLKZ20]T2 n = Θ(d)

The Generative Exponent [DPVLB24]k⋆

Level Set Definition: is the smallest positive integer such that: k⋆ k
𝔼[Tk(Y)2] ≠ 0 where Tk(Y) := 𝔼[hk(Z) |Y]

Examples:

‣ All univariate polynomials have

‣ has

‣ For all , such that

k⋆ ∈ {1,2}
Y = Z2e−Z2 k⋆ = 4

k ≥ 1 ∃σ ∈ C∞ k⋆(σ) = k

⟹ n ≳ d
⟹ n ≳ d2

⟹ n ≳ dk/2

Variational Definition: is the smallest achievable by a label transformation : k⋆ ℓ⋆ T

k⋆ := inf
T

ℓ⋆(Z, T(Y))

Optimal Rates for Single-Index Models

k⋆ := inf
T

ℓ⋆(Z, T(Y))
generative exponent

label transformationinformation exponent

1. transform the labels

2. run smoothed SGD [DNGL23]

y ← T(y)
Upper Bound:

 samples are necessary* and sufficient to recover to error n ≳ d k⋆
2 + d/ϵ w⋆ ϵ

Theorem [DPVLB24]

polynomial time algorithms* cannot
learn with fewer samples

Lower Bound:

*statistical query + low degree learners

k⋆ ≤ ℓ⋆

Examples of Hard Link Functions

°4 °2 0 2 4

k? = 3

°4 °2 0 2 4

k? = 6

°4 °2 0 2 4

k? = 4

°4 °2 0 2 4

k? = 7

°4 °2 0 2 4

k? = 5

°4 °2 0 2 4

k? = 8

Y

ℙ[Z |Y]

E[Y |Z]

°3

°2

°1

0

1

2

3

z1(Y)

°3 °2 °1 0 1 2 3

Z

Joint Distribution of (Z,z1(Y))

°3 °2 °1 0 1 2 3

Y

°2

°1

0

1

2

z1(Y)

Optimal Transformation z1

E[Y |Z]

°3

°2

°1

0

1

2

3

Y

°3 °2 °1 0 1 2 3

Z

Y = h5(Z) + additive Gaussian noise

Examples of optimal transformations T

Z

Y

 + noise, , Y = h5(Z) ℓ⋆ = 5 k⋆ = 1

Y

T1(Y)

Optimal Transformation T1

Z

T1(Y)

Post-TransformationPre-Transformation

E[Y |Z]

°0.50

°0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

z2(Y)

°3 °2 °1 0 1 2 3

Z

Joint Distribution of (Z,z2(Y))

°3 °2 °1 0 1 2 3

Y

°0.5

0.0

0.5

1.0

1.5

z2(Y)

Optimal Transformation z2

E[Y |Z]

°3

°2

°1

0

1

2

3

Y

°3 °2 °1 0 1 2 3

Z

Y = Zx where x ª N(0,1)

Examples of optimal transformations T

Y

T2(Y)

ZZ

Y T2(Y)

 where , , Y = ξ ⋅ Z ξ ∼ N(0,1) ℓ⋆ = ∞ k⋆ = 2

Optimal Transformation T2 Post-TransformationPre-Transformation

Conclusion for Single-Index Models

‣ Generative Exponent :
smallest information exponent achievable by a label transformation

‣Upper Bound:
For any Gaussian single-index model, can be efficiently recovered to

error with samples by transforming the labels

‣ Lower Bound:
This sample complexity is tight under the statistical query (SQ) and low-
degree polynomial (LDP) classes of algorithms

k⋆

ℓ⋆ T

w⋆

ϵ n ≳ d k⋆
2 + d/ϵ2

Gaussian Multi-Index Models
 follow a Gaussian single-index model with hidden subspace if:(X, Y) U⋆ ⊆ ℝd

X ∼ N (0, Id) and ℙ[Y |X] = ℙ[Y |Z] where Z := projU⋆(X) ∈ ℝr

‣ (parity)

‣ (deep neural network)

‣ (intersection of halfspaces)

Y = sign(Z1⋯Zr)
Y = aTσ(WLσ(Wl−1⋯σ(W1Z)))
Y = ∏j 1(vj ⋅ Z ≥ αj)

Examples:

Main Question: How many samples do you need to efficiently recover ?(xi, yi) U⋆

where is the “index” or the “hidden dimension”r := dim U⋆

Information Theory: samples suffice to recover (maximum-likelihood)

‣Naively searching for the maximum-likelihood estimator requires exponential time

n = O(dr) U⋆

ÛMLE

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity:

‣ Need to learn directions at once (-th order saddle)

‣ Gradient descent is believed to require samples

Y = sign(Z1⋯Zr)
r r

n ≳ dr−1

Staircase Functions:

Y = sign(Z1) + sign(Z1Z2) + … + sign(Z1⋯Zr)

, so k⋆ = 1 n = O(d)

Next, multiply all the labels by and subtract sign(Z1) 1

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity:

‣ Need to learn directions at once (-th order saddle)

‣ Gradient descent is believed to require samples

Y = sign(Z1⋯Zr)
r r

n ≳ dr−1

Staircase Functions:

Y = sign(Z2) + … + sign(Z2⋯Zr)

, so k⋆ = 1 n = O(d)

Next, multiply all the labels by and subtract , …sign(Z2) 1

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Gaussian Parity:

‣ Need to learn directions at once (-th order saddle)

‣ Gradient descent is believed to require samples

Y = sign(Z1⋯Zr)
r r

n ≳ dr−1

Staircase Functions:

Y = sign(Zr)

, so k⋆ = 1 n = O(d)

You’ve learned in samples!Z1, …, Zr O(d)

sign(Z1⋯Zr)

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

leap r

 Y = sign(Z1⋯Zr) n = dr/2

leap r

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

sign(Z1⋯Zr)

…

sign(Z1Z2)

sign(Z1)

leap 1

leap 1

leap 1

leap 1

n = d Y = sign(Z1)+ ⋯ + sign(Z1⋯Zr)

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

sign(Z1Z2Z3Z4)

sign(Z1)

leap 3

leap 1

n = d3/2 Y = sign(Z1) + sign(Z1Z2Z3Z4)

sign(Z2Z3Z4)

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

leap 3sign(Z1)

leap 1

n = d3/2 Y = sign(Z1) + sign(Z2Z3Z4)

sign(Z1Z2Z3)

h5(Z1)

leap 5

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Generative Exponent
[DPVLB24]

+

leap 3

n = d3/2 Y = h5(Z1) + sign(Z1Z2Z3Z4)

sign(Z1Z2Z3)

T(h5(Z1) + …)
leap 2

leap 1

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Generative Exponent
[DPVLB24]

+

n = d T(Y) = T(h5(Z1) + sign(Z1Z2Z3Z4))

The Staircase Property
[Abbe, Boix-Adsera, Misiakiewicz 22&23]

Generative Exponent
[DPVLB24]

+

n = d T(Y) = T(h5(Z1) + sign(Z1Z2Z3Z4))

“The Grand Staircase” [TDDZLK25]

Climbing the Staircase: The First Leap

label transformation

‣ Information at leap : 1 ×

‣ Information at leap : 2 span[Z1, Z2]
‣ Information at leap : 3 span[Z1, Z2]

‣ Information at leap : 4 span[Z1, Z2, Z3, Z4]

Example: Y = sign(Z1Z2) + sign(Z1Z2Z3Z4)

Information at leap :

 reshaped as a matrix

k

⨁
T

span(𝔼[T(Y)Hk(X)] d ∅ dk−1)

 analyzed in [TDDZLK25, KZM25]k ∈ {1,2}

sign(Z1Z2Z3Z4)

sign(Z1Z2)

leap 2

leap 2

sign(Z1Z2) + sign(Z1Z2Z3Z4)Y =

Climbing the Staircase

Need to condition on
to learn {Z1, Z2} {Z3, Z4}

Climbing the Staircase

Given: partially recovered subspace (e.g.)S ⊆ ℝd span[Z1, Z2]

Trick: just append to your labels! XS := projS(X) Y ← [Y, XS] ∈ ℝ|S|+1

 , reshaped as a matrixS ← S ⊕ ⨁
T

span(𝔼[T(Y XS)Hk(X)] d ∅ dk−1)

Climbing the Staircase:

While :S ≠ U⋆
.S ← ×

Transform both and Y XS

The Generative Leap Decomposition
If we repeat , we can decompose as:S ← S ⊕ {information of order ki} U⋆

× = S0 ⊂ S1 ⊂ ⋯ ⊂ SL = U⋆

such that learning given knowledge of is a leap of size .Si+1 Si ki

Theorem [DLB25]: is necessary* and sufficient to recover n ≳ d1∨ k⋆
2 U⋆

1. Use a spectral method to take
one step (learn from)

2. Iterate to climb the staircase

Si+1 Si

Upper Bound:

polynomial time algorithms* cannot
learn with fewer samples

Lower Bound:

*statistical query + low degree learners

We define the generative leap to be (the biggest leap) [DIKR25, DLB25]k⋆ := maxi ki

Our Estimator: A Spectral U-Statistic

‣ Suffers from poor concentration !

‣ Fixable by unfolding & keeping only the non-diagonal terms (U-statistic)

SVD[1
n(n − 1) ∑i≠j T(yi)T(yj) xixT

j (xi ⋅ xj)k−1]

Goal: estimate reshaped as a matrix⨁
T

span(𝔼[T(Y)Hk(X)] d ∅ dk−1)
Plug in estimator:

 reshaped as a matrixSVD[1
n ∑n

i=1 T(yi)Hk(X) d ∅ dk−1]

Our Estimator: A Spectral U-Statistic

‣ Suffers from poor concentration !

‣ Fixable by unfolding & keeping only the non-diagonal terms (U-statistic)

SVD[1
n(n − 1) ∑i≠j K(yi, yj) xixT

j (xi ⋅ xj)k−1]
‣ Replace by a kernel “averages infinite label transformations” T(yi)T(yj) K(yi, yj) ⇒

Goal: estimate reshaped as a matrix⨁
T

span(𝔼[T(Y)Hk(X)] d ∅ dk−1)
Plug in estimator:

 reshaped as a matrixSVD[1
n ∑n

i=1 T(yi)Hk(X) d ∅ dk−1]

Our Estimator: Climbing the Staircase

for

Draw fresh samples

Compute the matrix U-statistic on where

return

S ← ×
i = 1,…, m :

⌊n/m⌋
̂M (X, Ỹ) Ỹ = [Y |projS(X)]

[Λ, V] ← SVD(̂M)
S ← S ⊕ span[v1, …, vs]

S

Computing The Generative Leap k⋆

‣ Single Index: the generative leap and generative exponent coincide

‣ Polynomials: [CM20]

‣ Gaussian parity: has

 our upper bound gives the first algorithm that succeeds with samples

‣ Intersections of halfspaces: [Vem10]

‣ Piecewise linear:

 implies learnability of any constant depth/width ReLU network with samples

 improves a prior result of [CKM22] by allowing biases in the network

k⋆ ∈ {1,2}

Y = sign(Z1⋯Zr) k⋆ = r

⇒ n = O(d r
2)

k⋆ ∈ {1,2}

k⋆ ∈ {1,2}

⇒ n = O(d)

⇒

Conclusion for Multi-Index Models

‣ We introduced the generative leap as a natural generalization of the
generative exponent to multi-index models

‣ We proved an upper bound showing that for any Gaussian multi-index

model, can be recovered with samples

‣ We proved this sample complexity is tight under the statistical query (SQ)
and low-degree polynomial (LDP) classes

‣ We showed that many multi-index models, including ReLU networks, have
generative leap and can be learned with samples

k⋆

w⋆ n ≳ d1∨ k⋆
2

k⋆ ∈ {1,2} n = O(d)

